Systematic Review of Handoff Mnemonics Literature
Lee Ann Riesenb erg, Jessica Leitzsch and Brian W. Little
American Journal of Medical Quality 2009 24: 196 originally published online 5 March 2009
DOI: 10.1177/1062860609332512

The online version of this article can be found at:
http://ajm.sagepub.com/content/24/3/196

Published by:

http://www.sagepublications.com

On behalf of:

American College of Medical Quality

Additional services and information for American Journal of Medical Quality can be found at:

Email Alerts: http://ajm.sagepub.com/cgi/alerts
Subscriptions: http://ajm.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav
Citations: http://ajm.sagepub.com/content/24/3/196.refs.html

>> Version of Record - May 20, 2009
OnlineFirst Version of Record - Mar 5, 2009

What is This?
Systematic Review of Handoff Mnemonics Literature

Lee Ann Riesenberg, PhD, RN
Jessica Leitzsch, BS
Brian W. Little, MD, PhD

A systematic review of published English-language articles on handoffs is conducted (1987 to June 4, 2008). Forty-six articles describing 24 handoff mnemonics are identified by trained reviewers. The majority (82.6%) have been published in the last 3 years (2006-2008), and SBAR (Situation, Background, Assessment, Recommendation) is the most frequently cited mnemonic (69.6%). Of 7 handoff research articles, only 4 study mnemonics. All 4 of these studies have relatively small sample sizes (10-100) and lack validated instruments. Only 1 study has obtained IRB approval. Scientifically rigorous research studies are needed to assess the effectiveness of handoff mnemonics. These should be published in the peer-reviewed literature using the Standards for QUality Improvement Reporting Excellence (SQUIRE) guidelines. (Am J Med Qual 2009;24:196-204)

Keywords: handoff; handoffs; mnemonic; sign-out

Effective communication is central to safe and effective patient care. Handoffs or transfers of patient care from one health care provider to another are known to be vulnerable to communication failures. As defined by the Joint Commission, handoff communication “refers to a real-time process of passing patient/client/resident-specific information from one caregiver to another or from one team of caregivers to another for the purpose of ensuring the continuity and safety of the patient/client/resident’s care.”

The Joint Commission has reviewed data from 4977 sentinel events that occurred between 1995 and March 31, 2008. In organizations accredited by the Joint Commission, communication problems have been identified as one of the contributing causes in more than 60% of the sentinel events reviewed. As a result, the Joint Commission created a new National Patient Safety Goal in 2006: 2E “Implement a standardized approach to ‘hand off’ communications, including an opportunity to ask and respond to questions.” This goal has remained unchanged and was repeated in 2007 and 2008.

In 2005, the average length of stay for all hospitalized patients was 4.8 days. Assuming that patient care transfers occur between physicians at least twice per day and between nurses at least 3 times per day, the average patient will be handed off a minimum of 24 times per admission. This represents 24 opportunities for inadequate communication, each of which could result in reduced patient safety and increased medical errors.

Mnemonics are commonly used to enhance memory. In the case of handoffs, mnemonics may increase memory of important steps and provide a structured process to follow. Our experiences lead us to believe that many hospitals have responded to the Joint Commission handoff requirement by adding a mnemonic to their handoff protocol. The purpose of the current study was to identify all handoff mnemonics, describe their use, and summarize outcomes data from studies using these mnemonics.

METHODS

We conducted a thorough and systematic literature search of English-language articles published on handoffs using Ovid MEDLINE, CINAHL, and HealthSTAR (1987 to June 4, 2008), followed by
reference section review of all included articles. The search terms used were (hand-off$ OR handoff$ OR signout$ OR sign out$ OR sign-out$ OR handover$ OR hand-over$ OR signover$ OR sign-over$). A total of 2590 articles were identified. All titles were reviewed for possible inclusion, and 401 articles were obtained for further review. Trained reviewers deemed only 46 articles to meet the inclusion criteria of focusing on handoffs and including a handoff mnemonic. Two reviewers (LR and JL) independently abstracted data.

RESULTS

Forty-six articles that focused on health care handoffs yielded 24 handoff mnemonics, with SBAR (Situation, Background, Assessment, Recommendation) cited most frequently (Table 1). Thirty-eight articles (82.6%) were published between 2006 and 2008 (Figure 1).

Thirty-nine articles presented anecdotal data,11,14,19-22,24,26-33,36,41,44,47,50-52,55-56 with 15 of these providing a patient vignette18,23,33 or case study example12,17,25,35,37-38,42,45-46,48-49,53 depicting the use of the mnemonic, and 1 of those providing a brief literature review.12 There were 7 research studies of handoffs,15,40,54 with only 4 of these actually studying a mnemonic13,16,39,43 (Table 2).

DISCUSSION

We identified 46 articles describing handoff mnemonics. Thirty-two articles (69.6%) included SBAR (Situation, Background, Assessment, Recommendation). The majority (82.6%) of articles were published in recent years, which is not surprising given that the Joint Commission’s National Patient Safety Goal on handoffs was first issued in 2006. What is surprising is the lack of high-quality outcomes studies.

Only 4 of 46 (8.7%) reviewed articles collected data on handoff mnemonics. These had relatively small sample sizes (10-100) and failed to use validated instruments or to conduct validation of the instruments used. One study used self-reported familiarity with 2 mnemonics.13 Haig and colleagues39 assessed knowledge of SBAR using a telephone survey of 10 nurses prior to their intervention. The authors reported achieving 96% use of SBAR post intervention but did not provide details on how this was measured.

Horwitz and colleagues43 demonstrated a statistically significant increase ($P < .001$) in perceived comfort with providing sign-out after a 1-hour educational intervention with medical students and residents. Their intervention appears to be well designed, including a systematic development process. The educational intervention included discussion, modeling, and real-time practice, with feedback and evaluation for all learners. This was the only study reporting institutional review board (IRB) approval. However, the evaluation instrument appears to be modeled after the traditional course satisfaction form, with some items added about attitudes toward and comfort with sign-out. Although this is standard educational practice, it is not an ideal research practice, where use of a validated instrument or some attempt at validation is at least encouraged.

In the only study that examined practice behavior, there was a decrement in the accuracy of recall of handover information when a mnemonic (DeMIST) was used.16 Accuracy of recall was higher (56.6%) without the mnemonic than with the mnemonic (49.2%). The authors are to be commended for the assessment of practice; however, this study has several shortcomings. The sample was quite small: 18 observed handovers without the mnemonic and 10 observed using DeMIST. The authors noted the small sample and explained that this sample size was used to obtain initial data without delaying patient care in busy emergency departments (EDs). The authors also acknowledged that they did not control for staff seniority or experience. The ambulance crews simply agreed to structure their handover using the mnemonic DeMIST. The authors did not report providing training or practice time using the new handover.
Table 1
Handoff Mnemonics Identified in the English-Language Literature, Including Type of Staff Reported Using the Mnemonic, 1987 to June 2008

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Disciplines or Departments</th>
<th>Description</th>
</tr>
</thead>
</table>
| AIDET¹¹ | Perioperative staff, including nurses, anesthesiologists, physicians, and surgical technologists | A Acknowledge the patient
I Introduce yourself
D Duration of the procedure
E Explanation of process and what happens next
T Thank you for choosing our hospital (note: handoff done at bedside) |
| ANTICipate¹² | Physicians, residents | A Administrative data
N New information (clinical update)
T Tasks (what needs to be done)
I Illness
C Contingency planning/code status |
| ASHICE¹³ | Ambulance/emergency department | A Age
S Sex
H History
I Injuries
C Condition
E Expected time of arrival |
| CUBAN^{14,15} | Emergency department nurses, nurses, perioperative staff | C Confidential
U Uninterrupted
B Brief
A Accurate
N Named personnel |
| DeMIST¹⁶ | Ambulance/emergency department | De Patient demographics
M Mechanism of injury
I Injuries sustained
S Symptoms and signs
T Treatments given |
| GRRRR¹⁷ | Nurses, physicians | G Greeting
R Respectful listening
R Review
R Recommend or request more information
R Reward |
| HANDOFFS¹⁸ | Physicians, residents | H Hospital location: wing, room number
A Allergies/adverse reactions/medications
N Name (age, gender)/number (medical record)
D Do not attempt resuscitation (DNAR)?/diet/deep-vein thrombosis (DVT) prophylaxis
O Ongoing medical/surgical problems
F Facts about this hospitalization
F Follow-up on . . .
S Scenarios |
| I PASS the BATON^{19,20} | General nurses, perioperative nurses, physicians | I Introduction: introduce yourself and your role
P Patient: name, identifiers, age, sex, location
A Assessment: presenting chief complaint, vital signs, symptoms, diagnosis
S Situation: current status and circumstances: including codes status, level of certainty, recent changes, and response to treatment
S Safety concerns: critical lab values and reports, socioeconomic factors, allergies, alerts (eg, falls, isolation)
B Background: comorbidities, previous episodes, current medications, family history
A Actions: which were taken or are required, providing brief rationale
T Timing: level of urgency, explicit timing, and prioritization of actions
O Ownership: who is responsible (eg, nurse, doctor, team), including patient or family responsibilities
N Next: what happens next (eg, any anticipated changes in condition or care, the plan, any contingency plans) |

(continued)
Table 1 (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Disciplines or Departments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just Go NUTS</td>
<td>Nurses, physicians, transporters, and other clinical staff</td>
<td>N Name of patient, diagnosis, room number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U Unusual or unique; variances identified on the individual care plan including critical lab values, pain management, etc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T Tubes such as IV, NG, catheters, drains, ostomies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S Safety concerns such as falls, medication reconciliation</td>
</tr>
<tr>
<td>MIST</td>
<td>Ambulance/emergency department</td>
<td>M Mechanism of injury</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I Injuries sustained or suspected</td>
</tr>
<tr>
<td>PACE</td>
<td>Nurses</td>
<td>P Patient/problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Assessment/actions</td>
</tr>
<tr>
<td>PEDIATRIC</td>
<td>Residents</td>
<td>E Evaluation</td>
</tr>
<tr>
<td>SBAR</td>
<td>Anesthesiologists, mid-level practitioners, nurse assistants, nurses, nursing students, OR staff, PACU staff, perioperative staff, pharmacists, physical therapists, physicians, transporters, radiologists</td>
<td>S Situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Background</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Recommendation</td>
</tr>
<tr>
<td>I-SBAR</td>
<td>Nurses, physicians, transporters</td>
<td>I Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S Situation</td>
</tr>
<tr>
<td>SBARR</td>
<td>Nurses, physicians</td>
<td>B Background</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Assessment</td>
</tr>
<tr>
<td>SBAR-T</td>
<td>Nurses</td>
<td>R Recommendation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Response or read back</td>
</tr>
<tr>
<td>SHARED</td>
<td>Emergency department, surgery, PACU, and other nurses; pharmacists, physical therapists, physicians, respiratory therapists, and other staff</td>
<td>S Situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H History</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Request</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E Evaluate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D Document</td>
</tr>
<tr>
<td>SHARQ</td>
<td>Perioperative nurses</td>
<td>S Situation: describe the situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H History: medical history, allergies, home medications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Assessment: current medications, intake, output, status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Recommendations: results, discharge planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q Questions: opportunity to ask questions</td>
</tr>
</tbody>
</table>
mnemonic. The article provides an example transcript using an unstructured handover and a handover structured using DeMIST. Although the structured handover is obviously an example of a superior handover, it is possible that the ambulance crew’s handovers suffered when using an unfamiliar tool. Also, ED staff may have been familiar with the ambulance crews and their idiosyncratic communication styles. This may have contributed to the decrement in recall when hearing a different presentation format.

In a small study of intensive care unit handoffs, the authors noted that handoffs are complex, take many forms, and need to focus on what was uncertain. These authors concluded that formulaic approaches to handoffs will not adequately deal with critical care uncertainty and complexity. Others have warned against the use of standardized handoffs for physicians, stating that this will tend to “exacerbate the common problems of handoffs being ‘data transfers’ rather than meaningful discussions about the patient’s status and treatment.”

Limitations

The current study is limited by the Ovid search strategy used. Specifically, the selected search terms may not have included all relevant terms. We
Table 2

<table>
<thead>
<tr>
<th>First Author, Year Published</th>
<th>Type of Research Study</th>
<th>Subjects</th>
<th>Mnemonic Studied</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budd, 2007†</td>
<td>Cross-sectional mailed questionnaire</td>
<td>100 randomly selected emergency departments and all ambulance services (32) in England and Wales. Questionnaires returned from 34 (34%) emergency departments and 15 (50%) ambulance services.</td>
<td>MIST* and ASHICE†</td>
<td>One of 10 questions on the emergency department questionnaire referred to handoff mnemonics: 27.4% reported being familiar with MIST and 45.5% reported being familiar with ASHICE. One in 7 questions on the ambulance service questionnaire referred to handoff mnemonics: 15.4% reported being familiar with MIST and 86.7% reported being familiar with ASHICE.</td>
</tr>
<tr>
<td>Haig, 2006‡</td>
<td>Intervention with pre-intervention phone survey. Methods for collecting postintervention data not described. Intervention described as following the Plan, Do, Study, Act (PDSA) cycle and resulting in the creation of an SBAR trigger tool.</td>
<td>Nursing staff in Bloomington, Illinois. Total number of subjects was not reported.</td>
<td>SBAR‡</td>
<td>60% of 10 nurses contacted in 2004 by phone (pre-interventions) correctly described the use of SBAR and provided an example of its use. Authors reported that use of SBAR reached a mean of 96% in fiscal year 2005, but did not describe how this was assessed.</td>
</tr>
<tr>
<td>Horwitz, 2007‡</td>
<td>One-hour educational intervention with retrospective pretest and posttest self-reported attitudes at the end of the 1-h session.</td>
<td>Internal medicine interns and medical students in Connecticut. Session included facilitated discussion, modeling, and observed individuals practice with feedback. Did not take attendance at the educational session; collected 34 completed evaluations.</td>
<td>SBAR‡ and SIGNOUT§</td>
<td>Perceived comfort with providing sign-out increased from 3.27 ± 1.0 to 3.94 ± 0.90, P < .001. Sign-out was ranked as important or very important to patient care by all participants (mean score 4.88 ± 0.33). The mnemonic SIGNOUT was rated as useful or very useful (mean score 4.46 ± 0.78) by all participants and received a slightly higher rating than SBAR (mean score 4.18 ± 0.83).</td>
</tr>
<tr>
<td>Talbot, 2007‡</td>
<td>Cross-sectional observational study</td>
<td>Observed 18 unmodified handovers from ambulance staff to emergency department staff. Then 10 consecutive ambulance crews were asked to structure their handover using the DeMIST format. Observed these handovers. All subjects were in Birmingham and London, United Kingdom.</td>
<td>DeMIST¶</td>
<td>Accuracy of emergency department staff recall was higher without the mnemonic: 56.6% accuracy without DeMIST and 49.2% accuracy with DeMIST.</td>
</tr>
</tbody>
</table>

*MIST refers to Mechanism of injury, Injuries sustained or suspected, Signs—vital signs, Treatment initiated (and timing).
†ASHICE refers to Age, Sex, History, Injuries, Condition, Expected time of arrival.
‡SBAR refers to Situation, Background, Assessment, Recommendation.
§SIGNOUT refers to Sick or DNR? (highlight sick or unstable patients, identify DNR [do not resuscitate]/DNI [do not intubate] patients), Identifying data (name, age, gender, diagnosis), General hospital course, New events of the day, Overall health status/clinical condition, Upcoming possibilities with plan/rationale, Tasks to complete overnight with plan/rationale.
¶DeMIST refers to Patient demographics, Mechanism of injury, Injuries sustained, Symptoms and signs, Treatments given.
strengthened the possibility of identifying all articles meeting inclusion criteria by reviewing the reference sections of the 401 reviewed articles. Although this strategy minimizes the risk of missing germane studies, it does not eliminate the possibility. Another issue is publication bias. Here we refer to the possibility that high-quality studies with negative results may not have been published. Others have noted that many quality improvement (QI) projects are not published. In addition, we have observed that some QI projects are published in newsletters, with the authors never submitting to peer-reviewed journals. Thus, there may be outcomes studies of handoff mnemonics that are not in the peer-reviewed literature.

Recommendations

Small studies and anecdotal reports will not yield the essential answers. Numerous authors have noted the lack of published research on structured handoffs and the need to demonstrate the value of mnemonics. In addition, there are risks involved in implementing interventions without evidence to support their effectiveness. We agree with Winters and colleagues that “national efforts to improve patient safety should be supported by sufficiently strong evidence to warrant such a commitment of resources.”

Evidence-based practice is informed by high-quality research. Recently, publication guidelines for patient safety and quality initiatives have established a framework for reporting excellence. We recommend that future handoffs studies use the Standards for QUality Improvement Reporting Excellence (SQUIRE) guidelines.

It may be unreasonable to expect patient safety and quality studies to follow the design rigor of randomized controlled trials. However, the Rand/UCLA Appropriateness Method (RAM) provides a structured, rigorous method to synthesize data from other clinical study types with expert opinion to provide the best available guidelines. Unfortunately, the literature on handoff mnemonics identified here is not of sufficient quality and quantity to synthesize into evidence-based recommendations.

Across the United States, hospitals are implementing structured handoff protocols, many including the use of mnemonics. We call for rigorous outcomes studies designed to (1) assess the effectiveness of handoff mnemonics, (2) determine the elements of handoffs that lead to improved patient outcomes, (3) determine the best mnemonics for different settings and different practitioners, and (4) identify the best implementation strategies. These studies should be reported using the SQUIRE guidelines. Outcome studies designed and reported using the aforementioned recommendations are needed to implement a safe, efficient, and effective standardized handoff process as required by the Joint Commission. Without such studies, countless hospitals across the United States are doomed to waste time, resources, and effort on flawed handoff practices.

ACKNOWLEDGEMENTS

Special thanks to Ellen M. Justice, MLIS, AHIP, medical librarian for conducting literature searches; Dolores Ann Moran, medical library assistant II; and Janice Evans, medical library assistant II, for their assistance in locating articles; and Donald Riesenberg, MD, for feedback on the manuscript.

REFERENCES

Manning ML. Improving clinical communication through structured conversation. Nurs Econ. 2006;24:268-271.

