
Visualization of Hidden Node Activity in Neural
Networks: I. Visualization Methods

W�lodzis�law Duch

School of Computer Engineering, Nanyang Technological University, Singapore, and
Department of Informatics, Nicholaus Copernicus University, Grudzia̧dzka 5, Toruń, Poland,

http://www.phys.uni.torun.pl/˜duch

Abstract. Quality of neural network mappings may be evaluated by visual ins-
pection of hidden and output node activities for the training dataset. This paper
discusses how to visualize such multidimensional data, introducing a new projec-
tion on a lattice of hypercube nodes. It also discusses what type of information one
may expect from visualization of the activity of hidden and output layers. Detailed
analysis of the activity of RBF hidden nodes using this type of visualization is
presented in the companion paper.

1 Introduction

Feedforward networks provide non-linear mappings M(X; W) that applied to complex
feature space regions X convert them into localized (sometimes point-like) images of
these regions, for X ∈ X , M(X; W) = Y ∈ Y . Although this is a common knowledge
the mapping properties in classification tasks are almost never used, with focus being on
network decisions or estimation of probabilities of decisions. Performance of a typical
neural network is evaluated using such measures as the mean square error (MSE), or
estimation of the overall classification accuracy. These measures are global averages
over the whole feature space, estimated on the whole training or validation set. Detailed
properties of multidimensional mappings learned by the hidden layers, and mappings
from inputs to outputs that they provide, are regarded as inscrutable, possibly containing
singularities and various kinks. Neural mappings may exhibit surprising behavior in
novel situations and there is no simple way to find out what potential problems they may
hide.

The state of the network, expressed by the values of the weights and biases, may
be visualized using Hinton diagrams [1] displayed by some neural network simulators.
These diagrams contain interesting information about the network and allow for identifi-
cation of important connections and hidden nodes. They are not helpful to see what type
of internal representations have developed for a given data set, or how well the network
performs on some data. A few attempts to visualize the training process are restricted to
network trajectories in the weight space ([2], Kordos and Duch, in print). The usefulness
of visualization of network outputs has been shown recently [3]. The focus of this paper
is on visualization of images created by the hidden layer of feedforward networks with
localized functions.

L. Rutkowski et al. (Eds.): ICAISC 2004, LNAI 3070, pp. 38–43, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Visualization of Hidden Node Activity in Neural Networks: I. 39

For classification problems with K categories images of the training vectors may
be displayed as a scatterogram in K-dimensional space. For K > 3 this cannot be dis-
played directly in one figure, but a linear projection, parallel coordinate representation
or scatterograms for all pairs of outputs may be used. In the next section direct visua-
lization methods are introduced, and a new projection on a lattice of hypercube nodes is
described. This approach will be used to visualize patterns of activity of hidden neurons,
displaying internal representations created during the learning process. In section three
scatterograms of hidden node activities are advocated to reveal internal representations
of networks. In the last section discussion and some remarks on the usefulness and fur-
ther development of such visualization methods are given. Applications of these ideas
to the visualization of the hidden layer activity, showing what type of information may
be uncovered and how it can be used to improve the quality of neural solutions, are dis-
cussed in the companion paper. Because the use of color makes it easier to understand
the figures the reader is advised to view the color PDF version of the figures available
on-line [4].

2 How to Visualize?

Neural classifiers, committees and several other classification systems, map inputs first
to at least one internal space X → H, and from there to the output space, H → Y .
In case of feedforward neural networks with more than one hidden layer one internal
space per layer Hk is defined. The training data set T = {X(i)}, i = 1 . . . n is defined
in N -dimensional input space, Xi ∈ X , i = 1..N . In this paper only vector mappings
H(X) between the input space X , and NH -dimensional internal (or hidden) space H
are considered (see [3] for the total network mappings).

For two hidden nodes scatterograms showing for all vectors X ∈ T their images
H(X) = [H1(X), H2(X)] give full details of the internal representation of the training
data. For three dimensions scatterograms are still useful, especially with the ability to
rotate the point of view that is easy to implement. The H(X) values lie inside a unit cube;
projecting this cube on a plane perpendicular to the (1, 1, 1) diagonal shows vectors near
the (0, 0, 0) vertex (no activation of outputs) as overlapping with those near the (1, 1, 1)
vertex (all outputs fully active). This information may be added by scaling the size of
the markers, depending on the distance of the point to the (1, 1, 1) vertex [3]. Linear
projections on any 3 independent planes preserves full 3D information. In particular 3
pairs of scatterograms (H1, H2), (H1, H3) and (H2, H3) may be used.

For NH > 3 dimensions multiple scatterograms to view various 2D projections may
show all information, but NH(NH − 1)/2 pairs of scatterograms are needed. First two
PCA components calculated for the hypercube vertices (2n−1 points if (0, 0, ...0) point
is removed) define an interesting projection, but for more than 3 dimensions it hides
important relations among hypercube vertices. For example, in 4 dimensions all points
on the diagonal a[1, 1, 1, 1] are mapped on the (0, 0) point. This diagonal provides an
interesting first direction W(1) because projections of hypercube vertices P(i) on this
direction give the number of “1" bits, Y1 = W(1) · P(i), thus clearly separating the
vertices with different number of non-zero bits (incidentally, this provides a general
solution to the n-bit parity problem if cos(ωY1) is taken as the output function, where

40 W. Duch

ω is a single adaptive parameter). Projecting the vertices on the space orthogonal to the
main diagonal (1 − W(1)W(1)T)P(i) and selecting the first PCA component for this
data gives for some NH an interesting second direction that maximizes variance.

For NH = 3 this is not a good projections because pairs of vertices (1,0,0), (0,1,0),
and (1,0,1), (0,1,1), overlap, but rotating the 3D plot is easy. For NH = 4 the second
direction is W(2) =(–0.211, 0.789, -0.577, 0), and all vertices are clearly separated.
Connecting vertices that differ on one bit leads to a lattice (Fig. 1), a non-planar graph
representing the 4-dimensional hypercube. For NH = 5 the hypercube has already 32
vertices. Using the same approach to generate the second direction results in several
vertices that lie very close after the projection. Optimization of the average spacing
leads to W(2) = (–0.1, 0.2, –0.5, –0.33, 0.75), with all vertices clearly separated (Fig.
1). Lattice projection for 6 dimensions could also be used but with 64 vertices it is hardly
legible. One solution could be to show only those parts of the lattice where data points
are found, but it is clear that lattice projection is useful only for relatively small number
of dimensions.

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1100

1010

0110

0011

0101

1001

1110

1101

1011

0111

1111

1000

0100

0010

0001

0000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

00000

00100

00010

10000

01000

00001

00110

10100

10010

01100

01010

11000

00101

00011

10001

01001

10110

01110

11100

11010

00111

10101

10011

01101

01011

11001

11110

10111

01111

11101

11011

11111

Fig. 1. Lattices corresponding to the vertices of 4 and 5-dimensional hypercubes, obtained by
linear projection of their vertices.

Other interesting projection directions may be found, for example mapping the
unit vectors of the hypercube axis into polygon vertices. For NH = 4 projection di-
rections W(1) = 1/2(−1, 1, 1, −1); W(2) = (−0.4, −0.6, 1, 1) give the mapping
of hypercube from a different perspective, shown in Fig. 2. For NH = 5 dimen-
sions the first direction goes along the main diagonal W(1) = (1, 1, 1, 1, 1), and
W(2) = 3/2(1.1, −1, 2/3, −2/3, 0.1), creating a view that shows all vertices at ap-
proximately the same distance from each other (Fig. 2).

Because many neural networks use small number of nodes specialized visualization
methods are of considerable interest. If NH ≤ 6, scatterograms of the training data in
hidden or the output space may be displayed using lattice or polygon projections. It is
much easier to derive information from such images than from the analysis of numerical
output. For more than 6 dimensions parallel coordinates, popular in bioinformatics, are
frequently used, but in such visualization some loss of information is inevitable.

Other unsupervised visualization methods that may be used to create images of trai-
ning data in the hidden and output space include ICA projections, multidimensional
scaling (see [5,6] and the references therein), and barycentric mappings using Gaussian

Visualization of Hidden Node Activity in Neural Networks: I. 41

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1100

1010 0110

0011

0101

1001

1110

1101

1011 0111

1111

1000 0100

0010

0001

0000

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

00000

00100

00010

10000 01000

00001

00110

10100

10010

01100

01010

11000

00101

00011

10001 01001

10110 01110

11100

11010

00111

10101

10011

01101

01011

11001

11110

10111 01111

11101

11011

11111

Fig. 2. Linear projection of hypercube vertices in 4 and 5-dimensions; the thick lines are the
coordinate axes, ending in vertices that are on a square (left) and pentagon (right).

functions centered at the hypercube corners (Duch and Orlowski, unpublished; Pieknie-
wski and Rybicki, in print).

3 What to Visualize?

Visualization of network outputs has been used recently [3] to understand the dynamics
of the learning process and expose its pathologies, show under- and over-fitting effects,
compare quality of different networks, display border vectors and outliers identifying
input space regions where potential problems may arise, show differences in network
solutions due to the regularization, early stopping and various optimization procedures,
investigate stability of network classification under perturbation of original vectors, place
new data samples in relation to the known data to estimate confidence in classification
of a given sample. Here the main goal is to understand different internal representations
created by the learning process.

In classification problems the training data is divided into labeled subsets Tk, k =
1 . . . K corresponding to classes. Neural networks and other classification systems
usually try to map each of the training subsets Tk into one of the K vertices that lie
on the hypercube [0, 0, .., 1, 0, ..0] coordinate axes. Hidden layer should map subsets
Tk, k = 1 . . . K of the training vectors from the feature (input) space creating images,
or internal representations Hk of these subsets, in such a way that would make it easy to
separate these images by the hyperplanes, based either on linear nodes or on perceptron
nodes provided by the output layer. Without any loss of generality one may assume
that all mappings are between hypercubes, with input data rescaled to N -dimensional
hypercube, hidden data to NH dimensional (for a single layer), and output data to the
K-dimensional hypercube.

Networks with localized functions may map input X ∈ Tk clusters into subsets
Hk in the hidden space, allowing for reliable classification by inspection of the H(X)
images even in cases when linear separability cannot be achieved. Class-dependent
distributions may of course overlap and then images Hk created by hidden layer will
not make separable clusters. Visualization of these overlapping areas will identify the
border vectors and the input space regions where only low confidence predictions are
possible. Mappings provided by networks of different type may differ in many respects.

42 W. Duch

Neural networks may achieve the same classification in various ways; this is clearly seen
visualizing the structure of internal representations of the training data T .

For two-dimensional output space if the network outputs Yi are independent (i.e. they
are not forced to sum to 1) the desired answers may fall into (1, 0) and (0, 1) corners of
a square in (Y1, Y2) coordinates. If the values of two outputs of the mapping are forced
to sum to 1 to estimate posterior probabilities p(Ci|X; M) = Yi(X), images of all
vectors will fall on a single line Y1 + Y2 = 1 connecting these two corners. For 2 or 3-
dimensional feature spaces one may create a regular mesh of input points and look at their
hidden and the output images to see the properties of the mapping. In higher number
of dimensions this will be prohibitively expensive due to the exponentially growing
number of points. High dimensional feature spaces are always almost empty, therefore
such mapping should concentrate on the areas in the vicinity of the data. Scatterogram
images of all training vectors, sometimes extended by adding noise to the training data,
will show the character of mappings in the most important parts of the feature space,
where the training vectors are concentrated.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Hidden space

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Hidden space

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 3. Activity of two hidden Gaussian neurons for fuzzy XOR problem: good (left) and bad
(middle) internal representations, give the same output image (right). Left plot shows lines based
on the RBF output weights and biases.

In Fig. 3 a simple example of analysis based on scatterograms is shown for the noisy
XOR problem (4 non-overlapping Gaussian clusters, 50 points each). RBF network [7]
with two Gaussian nodes is not able to solve XOR problem, but in some runs perfect
clusterization is observed in the hidden space. In other runs centers of the Gaussians are
placed in a symmetrical way, leading to a complete overlap of the clusters from the two
different classes in the internal space. In both cases RBF classification accuracy is close
to the default 50% because the clusters are not linearly separable. The training algorithms
aimed at reducing output errors is not able to improve internal representations – from
the point of view of mean error it is as good as many other representations. The output
weights calculated by the RBF program are shown as lines in the left subfigure. They
are parallel, indicating that only biases are different and the output (Y1, Y2) values fall
on the Y1 + Y2 = 1 line.

Visualization of Hidden Node Activity in Neural Networks: I. 43

4 Discussion

Concentration on numbers makes evaluation of many aspects of neural network map-
pings rather difficult. In this paper lattice projection techniques have been introduced
and the need for visualization of internal representations stressed. There is no reason
why scatterogram images of the known data should not be displayed as a part of the neu-
ral network output. Such visualization may elucidate many aspects of neural network
functions [3]. Visualization of internal representations may suggest different network
architectures and training algorithms. Looking at Fig. 3 it is evident that paying more
attention to the improvement of internal representations will increase accuracy of a net-
work with the same architecture (2 hidden nodes) to 100%, instead of the default 50%
that standard RBF training algorithm achieves [7].

Neural networks are used in various ways for data visualization. Self-Organized-
Maps and other competitive learning algorithms, neural Principal and Independent Com-
ponent Analysis algorithms, autoassociative feedforward networks and Neuroscale al-
gorithms are all aimed at using neural algorithms to reduce dimensionality of the data or
to display the data (for a summary of such visualization methods see [6]). All these me-
thods may be used to visualize neural mappings, creating images of the hidden or output
neuron activity for presentation of all training data, although in many cases linear pro-
jection techniques discussed here will be sufficient. More applications of visualization
of the activity of hidden layers are presented in the companion paper.

References

1. Hinton, G.E., McClelland, J.L., Rumelhart, D.E. (1986): In: Parallel Distributed Processing,
Vol. 1: Foundations, eds. D.E. Rumelhart, J.L. McClelland, MIT Press, Cambridge, pp. 77-
109.

2. Gallagher, M., Downs, T. (2003): Visualization of Learning in Multi-layer Perceptron Net-
works using PCA. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics,
vol. 33, pp. 28-34.

3. Duch, W. (2003): Coloring black boxes: visualization of neural network decisions. Int. Joint
Conference on Neural Networks, Portland, Oregon, 2003, Vol. 1, pp. 1735-1740.

4. PDF version of the color figures and the Matlab programs used in experiments are available
at: http://www.phys.uni.torun.pl/kmk/publications.html

5. M. Jambu, Exploratory and Multivariate Data Analysis. Boston, MA: Academic Press, 1991.
6. A. Naud, Neural and statistical methods for the visualization of multidimensional data.

PhD thesis, Dept of Informatics, Nicholaus Copernicus University, 2001; available at
http://www.phys.uni.torun.pl/kmk/publications.html

7. C. Bishop, Neural networks for pattern recognition. Oxford: Clarendon Press, 1994.

	Introduction
	How to Visualize?
	What to Visualize?
	Discussion

